A Combinatorial Algorithm for Microbial Consortia Synthetic Design
نویسندگان
چکیده
Synthetic biology has boomed since the early 2000s when it started being shown that it was possible to efficiently synthetize compounds of interest in a much more rapid and effective way by using other organisms than those naturally producing them. However, to thus engineer a single organism, often a microbe, to optimise one or a collection of metabolic tasks may lead to difficulties when attempting to obtain a production system that is efficient, or to avoid toxic effects for the recruited microorganism. The idea of using instead a microbial consortium has thus started being developed in the last decade. This was motivated by the fact that such consortia may perform more complicated functions than could single populations and be more robust to environmental fluctuations. Success is however not always guaranteed. In particular, establishing which consortium is best for the production of a given compound or set thereof remains a great challenge. This is the problem we address in this paper. We thus introduce an initial model and a method that enable to propose a consortium to synthetically produce compounds that are either exogenous to it, or are endogenous but where interaction among the species in the consortium could improve the production line.
منابع مشابه
Design and construction of synthetic microbial consortia in China
The rapid development of synthetic biology enables the design, construction and optimization of synthetic microbial consortia to achieve specific functions. In China, the "973" project-"Design and Construction of Microbial Consortia" was funded by the National Basic Research Program of China in January 2014. It was proposed to address the fundamental challenges in engineering natural microbial ...
متن کاملDesign, analysis and application of synthetic microbial consortia
The rapid development of synthetic biology has conferred almost perfect modification on single cells, and provided methodological support for synthesizing microbial consortia, which have a much wider application potential than synthetic single cells. Co-cultivating multiple cell populations with rational strategies based on interacting relationships within natural microbial consortia provides t...
متن کاملEcological perspectives on synthetic biology: insights from microbial population biology
The metabolic capabilities of microbes are the basis for many major biotechnological advances, exploiting microbial diversity by selection or engineering of single strains. However, there are limits to the advances that can be achieved with single strains, and attention has turned toward the metabolic potential of consortia and the field of synthetic ecology. The main challenge for the syntheti...
متن کاملSynthetic biology in China, UK and US
China started to support synthetic biology research in 2011. So far nine projects have been supported with one related to plant and one to mammalian cells, the rest on microbial technology. Natural products (NPs) have always been an important area for synthetic biology research [4]. reviewed the progresses in discovery of novel biological parts and rational design of synthetic biological pathwa...
متن کاملEngineering microbial consortia: a new frontier in synthetic biology.
Microbial consortia are ubiquitous in nature and are implicated in processes of great importance to humans, from environmental remediation and wastewater treatment to assistance in food digestion. Synthetic biologists are honing their ability to program the behavior of individual microbial populations, forcing the microbes to focus on specific applications, such as the production of drugs and f...
متن کامل